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Abstract This paper shows that the solutions to various convex `1 minimization problems are unique if and

only if a common set of conditions are satisfied. This result applies broadly to the basis pursuit model, basis

pursuit denoising model, Lasso model, as well as other `1 models that either minimize f(Ax− b) or impose

the constraint f(Ax − b) ≤ σ, where f is a strictly convex function. For these models, this paper proves

that, given a solution x∗ and defining I = supp(x∗) and s = sign(x∗
I), x∗ is the unique solution if and only

if AI has full column rank and there exists y such that AT
I y = s and |aT

i y|∞ < 1 for i 6∈ I. This condition

is previously known to be sufficient for the basis pursuit model to have a unique solution supported on I.

Indeed, it is also necessary, and applies to a variety of other `1 models. The paper also discusses ways to

recognize unique solutions and verify the uniqueness conditions numerically.

Keywords `1 minimization ∙ basis pursuit ∙ LASSO ∙ solution uniqueness ∙ strict complementarity

1 Introduction

Let x ∈ Rn be the decision variable. This paper studies the unique solutions of the `1 minimization problems

including the basis pursuit problem [8]

min ‖x‖1 s.t. Ax = b (1a)
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2 Hui Zhang et al.

and convex problems

min f1(Ax− b) + λ‖x‖1, (1b)

min ‖x‖1, s.t. f2(Ax− b) ≤ σ, (1c)

min f3(Ax− b), s.t. ‖x‖1 ≤ τ, (1d)

where λ, σ, τ > 0 are scalar parameters, A is a matrix, and fi(x), i = 1, 2, 3 are strictly convex functions.

The Lasso problem [21] is a special case of problem (1b) or (1d) while the basis pursuit denoising problem

[8] is a special case of problem (1c) all with fi(∙) = 1
2‖ ∙ ‖

2
2, i = 1, 2, 3.

There is a rich literature on analyzing, solving, and applying problems in forms of (1a)–(1d) in the

communities of information theory, signal processing, statistics, machine learning, optimization, and so on.

In many cases, problems (1a)–(1d) need to have unique solutions; when there are more than one solution,

the set of solutions is a convex set including an infinite number of solutions. In compressive sensing signal

recovery, having non-unique solutions means that the underlying signal can not be reliably recovered from the

given data. When the basis pursuit denoising problem has a unique solution, the error between the solution

and original sparse signal can be bounded by the noise size [18]. In feature selection, non-unique solutions

cause ambiguity for feature identification. Even certain optimization methods and algorithms, especially

those producing the solution path of (1b)–(1d) over varying parameters such as LARS [14] and parametric

quadratic programming [1], require solution uniqueness; they will fail (or need special treatments) upon

encountering non-unique solutions. Therefore, establishing a condition of solution uniqueness is important for

both the analysis and computation of problems (1a)–(1d). Fortunately, there are various sufficient conditions

guaranteeing solution uniqueness in problem (1a), such as Spark [10,2], the mutual incoherence condition

[11,15], the null-space property (NSP) [12,9], the restricted isometry principle (RIP) [3], the spherical section

property [24], the “RIPless” property [5], and so on. Some conditions guarantee the unique recovery of a

given solution or solutions with a given set of signs; other conditions provide the guarantees for all solutions

with sufficiently few nonzero entries. However, none of them is known to be both necessary and sufficient for

solution uniqueness in problems (1b)–(1d). This paper shows that given a solution x∗ to any problem among

(1a)–(1d), Condition 1 below is both necessary and sufficient for x∗ to be the unique solution. Hence, it is

weaker than the sufficient conditions listed above.

We let X, Xλ, Yσ, and Zτ denote the sets of solutions to problems (1a)–(1d), respectively. We let ai be

the ith column of A and xi be the ith entry of x. Given an index set I, we frequently use AI as the submatrix

of A formed by its columns ai, i ∈ I and xI as the subvector of x formed by entries xi, i ∈ I.

Our analysis makes the following assumptions:

Assumption 1 Matrix A has full row rank.

Assumption 2 The solution sets X, Xλ, Yσ, and Zτ of problems (1a)–(1d), respectively, are nonempty.

Assumption 3 In problems (1b)–(1d), functions f1, f2, f3 are strictly convex. In addition, the constraint

of problem (1d) is bounding, namely, τ ≤ inf{‖x‖1 : f3(Ax− b) = f∗
3 }, where f∗

3 := miny∈Rn f(Ay − b).

Assumptions 1 and 2 are standard. If Assumption 1 does not hold and Ax = b is consistent, the problems

can be simplified; specifically, one can decompose A =

[
A1

A2

]

and b =

[
b1

b2

]

so that and A1 has full row rank

equal to rank(A), and one can replace the constraints Ax = b by A1x = b1 and introduce functions f̄i so that

f̄i(A1x− b1) ≡ fi(Ax− b), i = 1, 2, 3. Assumption 2 guarantees that the solutions of problems (1a)–(1d) can

be attained so the discussion of solution uniqueness makes sense. The strict convexity of f1, f2, f3 and the

restriction on τ in Assumption 3 are also fairly basic toward solution uniqueness. Strict convexity rules out
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piece-wise linearity. (Note that f1, f2, f3 can still be non-differentiable.) If the restriction on τ is removed,

the solution uniqueness of problem (1d) becomes solely up to f3(Ax− b), independent of ‖x‖1.

For a given vector x∗, the following conditions on matrix A is the key to solution uniqueness, and its

sufficiency has been established in [16].

Condition 1 Under the definitions I := supp(x∗) ⊆ {1, . . . , n} and s := sign(x∗
I), matrix A ∈ Rm×n has

the following properties:

1. submatrix AI has full column rank, and

2. there is y ∈ Rm obeying AT
I y = s and ‖AT

Icy‖∞ < 1.

The main theorem of this paper asserts that Condition 1 is both necessary and sufficient to the uniqueness

of solution x∗.

Theorem 1 (Solution uniqueness) Under Assumptions 1–3, given that x∗ is a solution to problem (1a),

(1b), (1c), or (1d), x∗ is the unique solution if and only if Condition 1 holds.

In addition, combining Theorem 1 with the optimality conditions for problems (1a)–(1d), the following

theorems give the necessary and sufficient conditions of unique optimality for those problems.

Theorem 2 (Basis pursuit unique optimality) Under Assumptions 1–2, x∗ ∈ Rn is the unique solution

to problem (1a) if and only if Ax∗ = b and Condition 1 is satisfied.

Theorem 3 (Problems (1b)–(1d) unique optimality) Under Assumptions 1–3 and the additional as-

sumption f1, f2, f3 ∈ C1, x∗ ∈ Rn is the unique solution to problem (1b), (1c), or (1d) if and only if,

respectively,

∃ p∗ ∈ ∂‖x∗‖1,3 p∗ + λAT∇f1(Ax∗ − b) = 0, (2a)

f(Ax∗ − b) ≤ σ and ∃ p∗ ∈ ∂‖x∗‖1, η ≥ 0,

3 p∗ + ηAT∇f2(Ax∗ − b) = 0, or (2b)

‖x∗‖1 ≤ τ and ∃ p∗ ∈ ∂‖x∗‖1, ν ≥ 0,

3 νp∗ + AT∇f3(Ax∗ − b) = 0, (2c)

and in addition Condition 1 holds.

The proofs of these theorems are given in Section 2 below.

1.1 Related works

Since the sufficiency is not the focus of this paper, we do not go into more details of the sufficient conditions

that have been mentioned above. We just point out that several papers such as [16,6] construct the least-

squares (i.e., minimal `2-norm) solution ȳ of AT
I y = s and establish sufficient conditions for ‖AT

Ic ȳ‖∞ < 1 to

hold. Next, we review the existing results on necessary conditions for the uniqueness of `1 minimizer.

Work [4] considers problem (1a) with complex-valued quantities and A equal to a down-sampled discrete

Fourier operator, for which it establishes both the necessity and sufficiency of Condition 1 to the solution

uniqueness of (1a). Their proof uses the Hahn-Banach separation theorem and the Parseval formula. Work

[23] lets the entries of matrix A and vector x in problem (1a) have complex values and gives a sufficient
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condition for its solution uniqueness. In regularization theory, Condition 1 is used to derive linear error

bounds under the name of range or source conditions in [18], which shows the necessity and sufficiency of

Condition 1 for solution uniqueness of (1a) in a Hilbert-space setting. More recently, [13] constructs the set

F = {x : ‖AT
JcAJ (AT

J AJ )−1sign(xJ )‖∞ < 1 and rank(AJ ) = |J |},

where J = supp(x), and then states that the set of vectors that can be recovered by problem (1a) is exactly

characterized by the closure of F if the measurement matrix A satisfies the so-called general position (GP)

condition, namely, for any sign vector s ∈ {−1, 1}n, the set of columns {Ai} of A ∈ Rm×n satisfying that

any k-dimensional affine subspace of Rm, k < m, contains at most k + 1 points from the set {siA
i}. This

paper claims that the result holds without the GP condition.

To our knowledge, there are few conditions addressing the solution uniqueness of problems (1b)–(1d).

The following conditions in [16], [17] are sufficient for x∗ to the unique minimizer of (1b) for f1(∙) = 1
2‖ ∙ ‖

2
2:

AT
I (b−AIx

∗
I) = λ ∙ sign(x∗

I), (3a)

‖AT
Ic(b−AIx

∗
I)‖∞ < λ, (3b)

AI has full column rank. (3c)

However, they are not necessary as demonstrated by the following example. Let

A =

[
1 0 2

0 2 −2

]

, b =

[
1

1

]

, λ = 1 (4)

and consider solving the Lasso problem, which is a special case of problem (1b):

min
1
2
‖Ax− b‖22 + λ‖x‖1. (5)

One gets the unique solution x∗ = [0 1/4 0]T and I = supp(x∗) = {2}. However, the inequality in condition

(3b) holds with equality. In general, conditions (3) becomes necessary in case AI happens to be a full rank

square matrix. This assumption, however, does not apply to a sparse solution x∗. Nevertheless, we summarize

the result in the following corollary, whose proof is given at the end of Section 2.

Corollary 1 If x∗ is the unique minimizer of problem (1b) with f1(∙) = 1
2‖∙‖

2
2 and if AI , where I = supp(x∗),

is a square matrix with full rank, then condition (3) holds.

Very recently, work [22] investigates the solution uniqueness of (5) and presents the following result.

Theorem 4 ([22]) Let x∗ be a solution of (5) and J := {i : |aT
i (b − Ax∗)| = λ}. If submatrix AJ is full

column rank, then x∗ is unique. Conversely, for almost every b ∈ Rm, if x∗ is unique, then AJ is full column

rank.

In Theorem 4, the necessity part “for almost every b” is new. Indeed, it is not for every b. An example is

given in (4) with a unique solution x∗ and J = {1, 2, 3}, but AJ does not full column rank. On the other

hand, we can figure out a special case in which the full column rankness of AJ becomes necessary for all b

in the following corollary, whose proof is given at the end of Section 2.

Corollary 2 Let x∗ be a solution of problem (5) and define I := supp(x∗) and J := {i : |aT
i (b−Ax∗)| = λ}.

If |J | = |I|+ 1, then x∗ is the unique solution if and only if AJ has full column rank.
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2 Proofs of Theorems 1–3

We establish Theorem 1 in three steps. Our first step proves the theorem for problem (1a) only. Since the

only difference between this part and Theorem 2 is the conditions Ax∗ = b, we prove Theorem 2 first. In the

second step, for problems (1b)–(1d), we show that both ‖x‖1 and Ax− b are constant for x over the solution

sets Xλ, Yσ, Zτ , respectively. Finally, we prove Theorem 1 for problems (1b)–(1d).

Proof (Proof of Theorem 2) We frequently use the notions I = supp(x∗) and s = sign(x∗
I) below.

“⇐=”. This part has been shown in [16,23]. For completeness, we give a proof. Let y satisfy Condition

1, part 2, and let x ∈ Rn be an arbitrary vector satisfying Ax = b and x 6= x∗. We shall show ‖x∗‖1 < ‖x‖1.

Since AI has full column rank and x 6= x∗, we have supp(x) 6= I; otherwise from AIx
∗
I = b = AIxI , we

would get x∗
I = xI and thus the contradiction x∗ = x.

From supp(x) 6= I, we get bT y < ‖x‖1. To see this, let J := supp(x) \ I, which is a non-empty subset of

Ic. From Condition 1, we have ‖AT
I y‖∞ = 1 and ‖AT

J y‖∞ < 1, and thus

〈xI , A
T
I y〉 ≤ ‖xI‖1 ∙ ‖A

T
I y‖∞ ≤ ‖xI‖1,

〈xJ , AT
J y〉 ≤ ‖xJ‖1 ∙ ‖A

T
J y‖∞ < ‖xJ‖1,

(the last inequality is “<” not “≤”) which lead to

bT y = 〈x,AT y〉 = 〈xI , A
T
I y〉+ 〈xJ , AT

J y〉

< ‖xI‖1 + ‖xJ‖1 = ‖x‖1.

On the other hand, we have

‖x∗‖1 = 〈x∗
I , sign(x∗

I)〉 = 〈x∗
I , A

T
I y〉 = 〈AIx

∗
I , y〉 = bT y

and thus ‖x∗‖1 = bT y < ‖x‖1.

“=⇒”. Assume that x∗ is the unique solution to (1a). Obviously, Ax∗ = b.

It is easy to obtain Condition 1, part 1. Suppose it does not hold. Then, AI has a nontrivial null space,

and perturbing x∗
I along the null space will change the objective ‖x∗

I‖1 = sT x∗
I while maintaining AIx

∗
I = b;

hence, this perturbing breaks the unique optimality of x∗. (In more details, there exists a nonzero vector

d ∈ Rn such that AIdI = 0 and dIc = 0. For any scalar α near zero, we have sign(x∗
I + αdI) = sign(x∗

I) = s

and thus ‖x∗ + αd‖1 = sT (x∗
I + αdI) = sT x∗

I + α(sT dI) = ‖x∗‖1 + α(sT dI). Since x∗ is the unique solution,

we must have ‖x∗
I + αd‖1 > ‖x∗‖1 or, equivalently, α(sT dI) > 0 whenever α 6= 0. This is impossible as we

can perturb α around 0 both ways.)

It remains to construct a vector y for Condition 1, part 2. Our construction is based on the strong

convexity relation between a linear program (called the primal problem) and its dual problem, namely, if one

problem has a solution, so does the other, and the two solutions must give the same objective value. (For the

interested reader, this result follows from the Hahn-Banach separation theorem, also from the theorem of

alternatives [7]. Alternatively, it can be obtain constructively via the Simplex method; specifically, whenever

a primal solution exists, the Simplex method terminates in a finite number of steps with a primal-dual

solution pair.)

The strong duality relation holds between (1a) and its dual problem

max
p∈Rm

bT p s.t. ‖AT p‖∞ ≤ 1 (6)
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because (1a) and (6), as a primal-dual pair, are equivalent to the primal-dual linear programs

min
u,v∈Rn

1T u + 1T v s.t. Au−Av = b, u ≥ 0, v ≥ 0, (7a)

max
q∈Rm

bT q s.t.− 1 ≤ AT q ≤ 1, (7b)

respectively, where the strong duality relation holds between (7a) and (7b). By “equivalent”, we mean that

one can obtain solutions from each other by the rules:

given u∗, v∗, obtain x∗ = u∗ − v∗

given x∗, obtain u∗ = max(x∗,0), v∗ = max(−x∗,0),

given q∗, obtain p∗ = q∗,

given p∗, obtain q∗ = p∗.

Therefore, since (1a) has solution x∗, there exists a solution y∗ to (6), which satisfies ‖x∗‖1 = bT y∗ and

‖AT y∗‖∞ ≤ 1. (One can obtain such y∗ from the Hahn-Banach separation theorem or the theorem of alter-

natives rather directly.) However, y∗ may not obey ‖AT
Icy∗‖∞ < 1. We shall perturb y∗ so that ‖AT

Icy∗‖∞ < 1.

To prepare for the perturbation, we let L := {i ∈ Ic : aT
i y∗ = −1} and U := {i ∈ Ic : aT

i y∗ = 1}. Our

goal is to perturb y∗ so that −1 < aT
i y∗ < 1 for i ∈ L ∪ U and y∗ remains optimal to (6). To this end,

consider for a fixed α > 0 and t := ‖x∗‖1, the linear program

min
x∈Rn

∑

i∈L

αxi −
∑

i∈U

αxi, s.t. Ax = b, ‖x‖1 ≤ t. (8)

Since x∗ is the unique solution to (1a), it is the unique feasible solution to problem (8), so problem (8) has

the optimal objective value
∑

i∈U αx∗
i −

∑
i∈L αx∗

i = 0. By setting up equivalent linear programs like what

has been done for (1a) and (6) above, the strong duality relation holds between (8) and its dual problem

max
p∈Rm,q∈R

bT p− tq, s.t. ‖AT p− αr‖∞ ≤ q, q ≥ 0, (9)

where r ∈ Rn is given by

ri =






1, i ∈ L,

−1, i ∈ U,

0, otherwise.

Therefore, (9) has a solution (p∗, q∗) satisfying bT p∗ − tq∗ = 0.

According to the last constraint of (9), we have q∗ ≥ 0, which we split into two cases: q∗ = 0 and q∗ > 0.

i) If q∗ = 0, we have AT p∗ = αr and bT p∗ = 0.

ii) If q∗ > 0, we let r∗ := p∗/q∗, which satisfies bT r∗ = t = ‖x∗‖1 and ‖AT r∗ − α
q∗ r‖∞ ≤ 1, or equivalently,

−1 + α
q∗ r ≤ AT r∗ ≤ 1 + α

q∗ r.

Now we perturb y∗. Solve (9) with a sufficiently small α > 0 and obtain a solution (p∗, q∗). If case i) occurs,

we let y∗ ← y∗ + p∗; otherwise, we let y∗ ← 1
2 (y∗ + r∗). In both cases,

– bT y∗ is unchanged, still equal to ‖x∗‖1;

– −1 < aT
i y∗ < 1 holds for i ∈ L ∪ U after the perturbation;

– for each i 6∈ L∪U , if aT
j y∗ ∈ [−1, 1] or aT

j y∗ ∈ (−1, 1) holds before the perturbation, the same holds after

the perturbation;

Therefore, after the perturbation, y∗ satisfies:

1) bT y∗ = ‖x∗‖1,
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2) ‖AT
I y∗‖∞ ≤ 1, and

3) ‖AT
Icy∗‖∞ < 1.

From 1) and 2) it follows

4) AT
I y = sign(x∗

I)

since ‖x∗
I‖1 = ‖x∗‖1 = bT y∗ = 〈AIx

∗
I , y

∗〉 = 〈x∗
I , A

T
I y∗〉 ≤ ‖x∗

I‖1‖A
T y∗‖∞ ≤ ‖x∗

I‖1 and thus 〈x∗
I , A

T
I y∗〉 =

‖x∗
I‖1, which dictates 4). From 3) and 4), Condition 1, part 2, holds with y = y∗.

Proof (Proof of Theorem 1 for problem (1a)) The above proof for Theorem 2 also serves the proof of Theorem

1 for problem (1a) since Ax∗ = b is involved only in the optimality part, not the uniqueness part.

Next, we show that Ax− b is constant for x over Xλ, Yσ, Zτ , and we first prove a simple lemma.

Lemma 1 Let f be a strictly convex function. If f(Ax− b) + ‖x‖1 is constant on a convex set S, then both

Ax− b and ‖x‖1 are constant on S.

Proof It suffices to prove the case where S has more one point. Let x1 and x2 be any two different points

in S. Consider the line segment L connecting x1 and x2. Since X is convex, we have L ⊂ X and that

f(Ax − b) + ‖x‖1 is constant on L. On one hand, ‖x‖1 is piece-wise linear over L; on the other hand, the

strict convexity of f makes it impossible for f(Ax−b) to be piece-wise linear over L unless Ax1−b = Ax2−b.

Hence, we have Ax1 − b = Ax2 − b and thus f(Ax1 − b) = f(Ax2 − b), from which it follows ‖x1‖1 = ‖x2‖1.

Since x1 and x2 are arbitrary two points in S, the lemma is proved.

With Lemma 1 we can show

Lemma 2 Under Assumptions 2 and 3, the following statements for problems (1b)–(1d) hold

1) Xλ, Yσ and Zτ are convex;

2) In problem (1b), Ax− b and ‖x‖1 are constant for all x ∈ Xλ;

3) Part 2) holds for problem (1c) and Yσ;

4) Part 2) holds for problem (1d) and Zτ .

Proof Assumption 2 makes sure that Xλ, Yσ, Zτ are all non-empty.

1) As a well-known result, the set of solutions of a convex program is convex.

2) Since f1(Ax− b)+λ‖x‖1 is constant over x ∈ Xλ and f1 is strictly convex by Assumption 3, the result

follows directly from Lemma 1.

3) If 0 ∈ Yσ, then the optimal objective is ‖0‖1 = 0; hence, Yλ = {0} and the results hold trivially.

Suppose 0 6∈ Yσ. Since the optimal objective ‖x‖1 is constant for all x ∈ Yσ and f2 is strictly convex by

Assumption 3, to prove this part in light of Lemma 1, we shall show f2(Ax− b) = σ for all x ∈ Yσ.

Assume that there is x̂ ∈ Yσ such that f2(Ax̂− b) < σ. Since f2(Ax− b) is convex and thus continuous in

x, there exists a non-empty ball B centered at x̂ with a sufficiently small radius ρ > 0 so that f2(Ax̄− b) < σ

for all x̄ ∈ B. Let α = min{ ρ
2∙‖x̂‖2

, 1
2} ∈ (0, 1). We have (1−α)x̂ ∈ B and ‖(1−α)x̂‖1 = (1−α)‖x̂‖1 < ‖x̂‖1,

so (1− α)x̂ is both feasible and achieving an objective value lower than the optimal one. Contradiction.

4) By Assumption 3, we have ‖x‖1 = τ for all x ∈ Zτ ; otherwise, there exists x̄ ∈ Zτ such that

τ > f3(Ax̄ − b) ≥ inf{‖x‖1 : f3(Ax − b) = f∗
3 }, contradicting Assumption 3. Since the optimal objective

f3(Ax − b) is constant for all x ∈ Zτ and f3 is strictly convex by Assumption 3, the result follows from

Lemma 1.
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Proof (Proof of Theorem 1 for problems (1b)–(1d)) This proof exploits Lemma 2. Since the results of Lemma

2 are are identical for problems (1b)–(1d), we present the proof for problem (1b). The proofs for the other

two problems are similar.

From Assumption 3, Xλ is nonempty so we pick x∗ ∈ Xλ. Let b∗ = Ax∗, which is independent of the

choice of x∗ according to Lemma 2. We introduce the linear program

min ‖x‖1, s.t. Ax = b∗, (10)

and let X∗ denote its solution set.

Now, we show that Xλ = X∗. Since Ax = Ax∗ and ‖x‖1 = ‖x∗‖1 for all x ∈ Xλ and conversely

any x obeying Ax = Ax∗ and ‖x‖1 = ‖x∗‖1 belongs to Xλ, it is suffices to show that ‖x‖1 = ‖x∗‖1
for any x ∈ X∗. Assuming this does not hold, then since problem (10) has x∗ as a feasible solution and

has a finite objective, we have a nonempty X∗ and there exists x̄ ∈ X∗ satisfying ‖x̄‖1 < ‖x∗‖1. But,

f(Ax̄− b) = f(b∗ − b) = f(Ax∗ − b) and ‖x̄‖1 < ‖x∗‖1 mean that x̄ is a strictly better solution to problem

(1b) than x∗, contradicting the assumption x∗ ∈ Xλ.

Since Xλ = X∗, x∗ is the unique solution to problem (1b) if and only if it is the same to problem (10).

Since problem (10) is in the same form of problem (1a), applying the part of Theorem 1 for problem (1a),

which is already proved, we conclude that x∗ is the unique solution to problem (1b) if and only if Condition

1 holds.

Proof (Proof of Theorem 3) The proof above also serves the proof for Theorem 3 since (2a)–(2c) are the

optimality conditions of x∗ to problems (1b)–(1d), respectively, and furthermore, given the optimality of x∗,

Condition 1 is the necessary and sufficient condition for the uniqueness of x∗.

Remark 1 For problems (1b)–(1d), the uniqueness of a given solution x∗ 6= 0 is also equivalent to a condi-

tion that is slightly simpler than Condition 1. To present the condition, consider the first-order optimality

conditions (the KKT conditions) (2a)–(2c) of x∗ to problems (1b)–(1d), respectively, Given x∗ 6= 0, η and ν

can be computed. From p∗ 6= 0 it follows that η > 0. Moreover, ν = 0 if and only if AT∇f3(Ax∗ − b) = 0.

The condition below for the case ν = 0 in problem (1d) reduces to Condition 1. Define

P1 = {i : |λaT
i ∇f1(Ax∗ − b)| = 1},

P2 = {i : |ηaT
i ∇f2(Ax∗ − b)| = 1},

P3 = {i : |aT
i ∇f2(Ax∗ − b)| = ν}.

By the definitions of ∂‖x∗‖1 and Pi, we have supp(x∗) ⊆ Pi, i = 1, 2, 3.

Condition 2 Under the definitions I := supp(x∗) ⊆ Pi and s := sign(x∗
I), matrix APi ∈ R

m×|Pi| obeys

1. submatrix AI has full column rank, and

2. there exists y ∈ Rm such that AT
I y = s and ‖AT

Pi\Iy‖∞ < 1.

Compared to Condition 1, Condition 2 only checks the submatrix APi but not the full matrix A.

It is not difficult to show that the linear programs

min ‖x‖1, s.t. (APi
)x = b∗,

for i = 1, 2, 3, have the solution sets that are equal to Xλ, Yσ, Zτ , respectively. From this argument, we have

Theorem 5 Under Assumptions 1–3 and the additional condition that f1, f2, f3 ∈ C1, given that x∗ 6= 0 is

a solution to problem (1b), (1c), or (1d), x∗ is the unique solution if and only if Condition 2 holds for i = 1,

2, or 3, respectively.
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Proof (Proof of Corollary 1) From Theorem 3, if x∗ is the unique minimizer of problem (1b) with f1(∙) =
1
2‖ ∙ ‖

2
2, then Condition 1 holds, so there must exist a vector y such that AT

I y = s and ‖AT
Icy‖∞ < 1.

Combining with (3a), we have

λAT
I y = λs = AT

I (b−AIx
∗).

Since AI is a full rank square matrix, we get y = 1
λ (b − AIx

∗). Substituting this formula to ‖AT
Icy‖∞ < 1,

we obtain condition (3).

Proof (Proof of Corollary 2) The sufficiency part follows from Theorem 4. We shall show the necessity part,

namely, if x∗ is the unique solution, then AJ has full column rank. Following the assumption |J | = |I|+1, we

let {i0} = J\I. Since x∗ is the unique solution, from Theorem 3, we know that AI has full column rank. Hence,

if AJ does not have full column rank, then we can have ai0 = AIβ for some β ∈ R|I|. From Theorem 3, if x∗ is

the unique minimizer, then Condition 1 holds, and in particular, there must exist a vector y such that AT
I y = s

and ‖AT
Icy‖∞ < 1. Now, on one hand, as i0 ∈ Ic, we get 1 > |aT

i0
y| = |βT AT

I y| = |βT s|; on the other hand,

as i0 ∈ J , we also have |aT
i0

(b−Ax∗)| = λ, which implies 1 = 1
λ |a

T
i0

(b−Ax∗)| = 1
λ |β

T AT
I (b−Ax∗)| = |βT s|,

where the last equality follows from (2a) (which includes (3a)). Contradiction.

3 Recognizing and verifying unique solutions

Applying Theorem 1, we can recognize the uniqueness of a given solution x∗ to problem (1a) given a dual

solution y∗ (a solution to problem (6)). Specifically, let J := {i : |aT
i y∗| = 1}, and if AJ has full column

rank and supp(x∗) = J , then according to Theorem 1, x∗ is the unique solution to (1a). The converse is

not true since there generally exist multiple dual solutions with different J . The key is to find the one with

the smallest J . Several linear programming interior point methods (see [19] for example) return the dual

solution y∗ with the smallest J , so if either AJ is column-rank deficient or supp(x∗) 6= J , then x∗ is surely

non-unique.

Corollary 3 Under Assumption 1, given a pair of primal-dual solutions (x∗, y∗) to problem (1a), let J :=

{i : |aT
i y∗| = 1}. Then, x∗ is the unique solution to (1a) if AJ has full column rank and supp(x∗) = J . In

addition, if y∗ is obtained by a linear programming interior-point algorithm, the converse also holds.

Similar results will also hold for problems (1b)–(1d) if a dual solution y∗ to (10) is available.

One can also directly verify Condition 1. Given a matrix A ∈ Rm×n, a set of its columns indexed by I,

and a sign pattern s = {−1, 1}|I|, we mention two approaches to verify Condition 1. Checking whether AI

has full column rank is straightforward.

To check part 2 of Condition 1, the first approach is to follow the proof of Theorem 1. Note that

Condition 1 depends only on A, I, and s, independent of x∗. Therefore, construct an arbitrary x∗ such that

supp(x∗) = I and sign(x∗
I) = s and let b = Ax∗. Solve problem (6) and let y∗ be its solution. If y∗ satisfies

part 2 of Condition 1, we are done; otherwise, define L, U , and t by x∗ as in the proof, pick a small ᾱ > 0,

and solve program (9) parametrically in α ∈ [0, ᾱ]. The solution is piece-wise linear in α (it is possible that

the solution does not exist over certain intervals of α). Then check if there is a perturbation to y∗ so that

y∗ satisfies part 2 of Condition 1.

In the second approach to check part 2 of Condition 1, one can solve the convex program

min
y∈Rm

−
∑

i∈Ic

log(1− aT
i y) + log(1 + aT

i y),

s.t. AT
I y = s.

(11)
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Since aT
i y → 1 or aT

i y → −1 will infinitely increase the objective, (11) will return a solution satisfying

Condition 1, part 2, as long as a solution exists. In fact, any feasible solution to (11) with a finite objective

satisfies Condition 1, part 2. To find a feasible solution, one can apply the augmented Lagrangian method,

which does not require AT
I y = s to hold at the initial point (which must still satisfy |aT

i y| < 1 for all i ∈ Ic),

or one can consider applying the alternating direction method of multipliers (ADMM) to the equivalent

problem

min
y,z
−
∑

i∈Ic

log(1− zi) + log(1 + zi),

s.t. AT
I y = s, z −AT

Icy = 0.

(12)

One can start ADMM from the origin, and the two subproblems of ADMM have closed-form solutions; in

particular, the z-subproblem is separable in zi’s and reduces to finding the zeros of 3-order polynomials in

zi, i ∈ Ic. If (12) has a solution, ADMM will find one; otherwise, it will diverge.

It is worth mentioning that one can use alternating projection in [20] to generate test instances that fulfill

Condition 1.

4 Conclusions

This paper shows that Condition 1, which is previously known to be sufficient for the solution uniqueness of

the basis pursuit model, is also necessary. Moreover, the condition applies to various `1 minimization models.

The result essentially follows from the fact that a pair of feasible primal-dual programs have strict comple-

mentary solutions. The result also sheds light on numerically recognizing unique solutions and verifying

solution uniqueness.
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